A low-cost perfusion heating system for slice electrophysiology.
2
Temperature-critical applications, such as patch-clamp electrophysiology, require constant perfusion at a fixed temperature. However, maintaining perfusate at a specific temperature throughout various applications requires heaters or coolers with integrated feedback systems, which has historically increased complexity and cost. This makes such systems prohibitively expensive in research environments with lower funding rates, particularly in developing countries. We developed a custom temperature control system that relies on off-the-shelf components and few custom parts, which can be easily produced with common tools. Our system can be built for less than $30 and maintains a set perfusate temperature within 0.4 °C while introducing negligible electrical interference. Using this system, we demonstrate that Striatal Medium Spiny Neurons exhibit increased membrane resistance, longer membrane time constants, lower firing rates, and increased rheobase current at room temperature compared to physiological temperature.
Rapid modulation of striatal cholinergic interneurons and dopamine release by satellite astrocytes.
2
Astrocytes are increasingly appreciated to possess underestimated and important roles in modulating neuronal circuits. Astrocytes in striatum can regulate dopamine transmission by governing the extracellular tone of axonal neuromodulators, including GABA and adenosine. However, here we reveal that striatal astrocytes occupy a cell type-specific anatomical and functional relationship with cholinergic interneurons (ChIs), through which they rapidly excite ChIs and govern dopamine release via nicotinic acetylcholine receptors on subsecond timescales. We identify that ChI somata are in unexpectedly close proximity to astrocyte somata, in mouse and human, forming a "soma-to-soma" satellite-like configuration not typically observed for other striatal neurons. We find that transient depolarization of astrocytes in mouse striatum reversibly regulates ChI excitability by decreasing extracellular calcium. These findings reveal a privileged satellite astrocyte-interneuron interaction for striatal ChIs operating on subsecond timescales via regulation of extracellular calcium dynamics to shape downstream striatal circuit activity and dopamine signaling.
New MiniPromoter Ple389 (ADORA2A) drives selective expression in medium spiny neurons in mice and non-human primates.
0
Compact cell type-specific promoters are important tools for basic and preclinical research and clinical delivery of gene therapy. In this work, we designed novel MiniPromoters to target D1 and D2 type dopaminoceptive medium spiny neurons in the striatum by manually identifying candidate regulatory regions or employing the OnTarget webserver. We then empirically tested the designs in rAAV-PHP.B for specificity and robustness in three systems: intravenous injection in mice, intracerebroventricular injection in mice, and intracerebroventricular injection in non-human primates. Twelve MiniPromoters were designed from eight genes: seven manually and five using OnTarget. When delivered intravenously in mice, three MiniPromoters demonstrated highly selective expression in the striatum, with Ple389 (ADORA2A) showing high levels of dopamine D2-receptor cell co-localization. The same three MiniPromoters also displayed enriched expression in the striatum when delivered intracerebroventricularly in mice with high levels of DARPP32 co-localization. Finally, Ple389 (ADORA2A) was intracerebroventricularly injected in non-human primates and showed enriched expression in the striatum as in the mouse. Ple389 (ADORA2A) demonstrated expression in the medium spiny neurons in all three systems tested and exhibited the highest level of D2-MSNs and DARPP32 co-labeling in mice, demonstrating its potential as a tool for gene therapy approaches for Parkinson and Huntington disease treatment.
Latest Updated Curations
Basal Ganglia Advances
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce non orci non eros posuere porttitor. Donec orci magna, mollis ac pulvinar vel, consectetur id metus.
Navigation & Localization
Work related to place tuning, spatial navigation, orientation and direction.
Progress in Voltage Imaging
Recent advances in the field of Voltage Imaging, with a special focus on new constructs and novel implementations.
Most Popular Recent Articles
Rapid modulation of striatal cholinergic interneurons and dopamine release by satellite astrocytes.
2
Astrocytes are increasingly appreciated to possess underestimated and important roles in modulating neuronal circuits. Astrocytes in striatum can regulate dopamine transmission by governing the extracellular tone of axonal neuromodulators, including GABA and adenosine. However, here we reveal that striatal astrocytes occupy a cell type-specific anatomical and functional relationship with cholinergic interneurons (ChIs), through which they rapidly excite ChIs and govern dopamine release via nicotinic acetylcholine receptors on subsecond timescales. We identify that ChI somata are in unexpectedly close proximity to astrocyte somata, in mouse and human, forming a "soma-to-soma" satellite-like configuration not typically observed for other striatal neurons. We find that transient depolarization of astrocytes in mouse striatum reversibly regulates ChI excitability by decreasing extracellular calcium. These findings reveal a privileged satellite astrocyte-interneuron interaction for striatal ChIs operating on subsecond timescales via regulation of extracellular calcium dynamics to shape downstream striatal circuit activity and dopamine signaling.
A low-cost perfusion heating system for slice electrophysiology.
2
Temperature-critical applications, such as patch-clamp electrophysiology, require constant perfusion at a fixed temperature. However, maintaining perfusate at a specific temperature throughout various applications requires heaters or coolers with integrated feedback systems, which has historically increased complexity and cost. This makes such systems prohibitively expensive in research environments with lower funding rates, particularly in developing countries. We developed a custom temperature control system that relies on off-the-shelf components and few custom parts, which can be easily produced with common tools. Our system can be built for less than $30 and maintains a set perfusate temperature within 0.4 °C while introducing negligible electrical interference. Using this system, we demonstrate that Striatal Medium Spiny Neurons exhibit increased membrane resistance, longer membrane time constants, lower firing rates, and increased rheobase current at room temperature compared to physiological temperature.
A cellular basis for mapping behavioural structure.
2
To flexibly adapt to new situations, our brains must understand the regularities in the world, as well as those in our own patterns of behaviour. A wealth of findings is beginning to reveal the algorithms that we use to map the outside world. However, the biological algorithms that map the complex structured behaviours that we compose to reach our goals remain unknown. Here we reveal a neuronal implementation of an algorithm for mapping abstract behavioural structure and transferring it to new scenarios. We trained mice on many tasks that shared a common structure (organizing a sequence of goals) but differed in the specific goal locations. The mice discovered the underlying task structure, enabling zero-shot inferences on the first trial of new tasks. The activity of most neurons in the medial frontal cortex tiled progress to goal, akin to how place cells map physical space. These 'goal-progress cells' generalized, stretching and compressing their tiling to accommodate different goal distances. By contrast, progress along the overall sequence of goals was not encoded explicitly. Instead, a subset of goal-progress cells was further tuned such that individual neurons fired with a fixed task lag from a particular behavioural step. Together, these cells acted as task-structured memory buffers, implementing an algorithm that instantaneously encoded the entire sequence of future behavioural steps, and whose dynamics automatically computed the appropriate action at each step. These dynamics mirrored the abstract task structure both on-task and during offline sleep. Our findings suggest that schemata of complex behavioural structures can be generated by sculpting progress-to-goal tuning into task-structured buffers of individual behavioural steps.